Model for calculation of density profiles of a hard-sphere fluid near curved walls

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys.: Condens. Matter 73845
(http://iopscience.iop.org/0953-8984/7/20/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.151
The article was downloaded on 12/05/2010 at 21:18

Please note that terms and conditions apply.

Model for calculation of density profiles of a hard-sphere fluid near curved walls

M Yasutomi and M Ginoza
Department of Physics, College of Science, University of the Ryukyus, Nishihara-Cho, Okinawa 903-01, Japan

Received 10 January 1995

Abstract

The generalized mean spherical approximation model presented in the previous paper is extended to the case of the analytical solution of the Ornstein-Zernike equation with the closure relations which are given by Yukawa functions with different damping factors. The calculated result of the density profiles is compared with the recent computer simulation data.

1. Introduction

In the previous paper (Ginoza et al 1994), we presented a model for calculation of the fluid density profiles of a hard-sphere fluid near curved walls and compared the calculated density profiles with the recent computer simulation data of Degreve and Henderson (1994). The model is based on the analytical solution of the Ornstein-Zernike (OZ) equation with the closure relations consisting of Yukawa functions with the same damping factors (Ginoza 1994). The aim of this paper is to extend the model to the case of different damping factors. This attempt corresponds to an application of the two-Yukawa case of the mean spherical approximation (MSA) solution by Blum (1980).

2. The extended model

Let us consider a fluid in a volume V with temperature T. The fluid consists of N_{1} solvent hard spheres with the diameter σ_{1} and a solute hard sphere with the diameter σ_{2}. We regard the fluid as a two-component mixture in the dilute limit

$$
\begin{equation*}
\rho_{2} \sigma_{2}^{3} \longrightarrow 0 \tag{1}
\end{equation*}
$$

where ρ_{2} is the number density of the solute spheres. The static structure of the mixture is described by the total correlation function $h_{i j}(r)$ and the direct correlation function $c_{i j}(r)$: in the limit of equation (1), $h_{22}(r)$ and $c_{22}(r)$ are not needed. To the $O Z$ equation, we shall apply the following closure relations with different damping factors:

$$
\begin{array}{ll}
g_{i 1}(r)=h_{i 1}(r)+1=0 & r<\sigma_{i 1}=\frac{\sigma_{i}+\sigma_{1}}{2} \\
c_{i 1}(r)=\frac{K_{i 1}}{r} \mathrm{e}^{-z_{i}\left(r-\sigma_{11}\right)} & r>\sigma_{i 1} \tag{2b}
\end{array}
$$

where $i=1,2$. Therefore, the model is characterized by $K_{11}, K_{21}\left(=K_{12}\right), z_{1}$ and z_{2}, which are determined from other physical criteria according to the spirit of the generalized MSA (Waisman 1973a).

Let us write equation (2b) as follows:

$$
\begin{equation*}
c_{i 1}(r)=\sum_{n=1}^{2} \frac{K_{i 1}^{(n)}}{r} \mathrm{e}^{-z_{n} r} \quad r>\sigma_{i 1} \tag{3a}
\end{equation*}
$$

where

$$
\begin{array}{ll}
K_{11}^{(1)}=K_{11} \mathrm{e}^{z_{1} \sigma_{1}} & K_{11}^{(2)}=0 \\
K_{21}^{(1)}=K_{12}^{(1)}=0 & K_{21}^{(2)}=K_{12}^{(2)}=K_{21} \mathrm{e}^{2_{2} \sigma_{21}} . \tag{3b}
\end{array}
$$

The OZ equation in the Baxter formalism with the closure relations (2a) and (3a) has been solved formally (Blum and Høye 1978, Blum 1980). The solution is given in terms of the Baxter function, $Q_{i 1}(r)$, as follows:

$$
\begin{equation*}
Q_{i 1}(r)=Q_{i 1}^{0}(r)+\sum_{n=1}^{2} D_{i 1}^{(n)} \mathrm{e}^{-z_{n} r} \tag{4a}
\end{equation*}
$$

where
$Q_{i 1}^{0}(r)=\left\{\begin{array}{l}\frac{1}{2}\left(r-\sigma_{i 1}\right)\left(r-\lambda_{1 i}\right) A_{1}+\left(r-\sigma_{i 1}\right) \beta_{1}+\sum_{n=1}^{2} C_{i 1}^{(n)}\left(\mathrm{e}^{-z_{n} r}-\mathrm{e}^{-z_{n} \sigma_{i 1}}\right) \\ \left.\quad \text { for } \lambda_{1 t}<r<\sigma_{i 1}\right) \\ 0 \quad \text { otherwise }\end{array}\right.$
where $\lambda_{1 i}=\left(\sigma_{1}-\sigma_{i}\right) / 2$ and $i=1,2$. Note that there is no need to consider $Q_{22}(r)$ in the limit of equation (1).

Now, regarding the coefficients in equations (4a) and (4b), we first note that in the limit of equation (1), the $O Z$ equation determining the static structure of the solvent does not couple to the solute: $h_{11}(r)$ (or $Q_{11}(r)$) is given by the MSA solution in the case of the pure fluid (Waisman 1973b, Blum and Høye 1978). The coefficients of the solution are determined by $\eta\left(=\pi \rho \sigma_{1}^{3} / 6\right), K_{11}$ and z_{1}, ρ being the number density of solvent spheres. The most simple expressions for $A_{1}, \beta_{1}, D_{11}^{(1)}\left(=D_{11}\right)$ and $C_{11}^{(1)}\left(=C_{11}\right)$ are availabie in the previous paper (Ginoza 1994) with the replacement of z, Z_{1} and K in that paper by z_{1}, unity and K_{11}, respectively, while $D_{11}^{(2)}=C_{11}^{(2)}=0$ as shown below (see equation ($6 a$).

As for $D_{21}^{(n)}$ and $C_{21}^{(n)}$, they are determined by the following algebraic equations (Blum 1980, see also Ginoza 1986): in the limit of equation (1),
$\frac{2 \pi K_{i 1}^{(n)}}{z_{n}}=D_{i 1}^{(n)}\left[1-\rho \tilde{Q}_{11}\left(i z_{n}\right)\right]$
$C_{i 1}^{(n)}=-D_{i 1}^{(n)}+2 \pi \rho \widetilde{g}_{i 1}\left(z_{n}\right) \frac{D_{11}^{(n)}}{z_{n}}$

$$
\begin{align*}
2 \pi \tilde{g}_{i 1}\left(z_{n}\right)[1 & \left.-\rho \tilde{Q}_{11}\left(i z_{n}\right)\right] \\
& =\left[\left(1+\frac{z_{n} \sigma_{i}}{2}\right) A_{1}+z_{n} \beta_{1}\right] \frac{\mathrm{e}^{-z_{n} \sigma_{i 1}}}{z_{n}^{2}}-\sum_{m=1}^{2} C_{i 1}^{(m)} \mathrm{e}^{-\left(z_{n}+z_{m}\right) \sigma_{i 1}} \frac{z_{m}}{z_{n}+z_{m}} \tag{5c}
\end{align*}
$$

where

$$
\tilde{Q}_{11}(\mathrm{i} s)=\int_{0}^{\infty} \mathrm{d} r Q_{11}(r) \mathrm{e}^{-s r} \quad \tilde{g}_{i 1}(s)=\int_{0}^{\infty} \mathrm{d} r r g_{i 1}(r) \mathrm{e}^{-s r}
$$

From equations ($3 b$), ($5 a$) and ($5 b$), we get immediately the following:

$$
\begin{align*}
& C_{11}^{(2)}=D_{11}^{(2)}=D_{21}^{(1)}=0 \tag{6a}\\
& C_{21}^{(1)}=2 \pi \rho \tilde{g}_{21}\left(z_{1}\right) \frac{D_{11}}{z_{1}} \tag{6b}\\
& C_{21}^{(2)}=-D_{21}^{(2)}=-\frac{2 \pi K_{21}^{(2)}}{z_{2}} \frac{1}{1-\rho \widetilde{Q}_{11}\left(\mathrm{i} z_{2}\right)} \tag{6c}
\end{align*}
$$

Substitution of equations ($6 b$) and ($6 c$) into equation ($5 c$) yields an equation for $\widetilde{g}_{21}\left(z_{1}\right)$ in terms of known coefficients. Thus, all coefficients in equations (4a) and (4b) can be obtained as explicit functions of $\eta, \sigma_{1} / \sigma_{2}, K_{11}$ (or $c_{11}\left(\sigma_{1}\right)$), K_{12} (or $c_{12}\left(\sigma_{12}\right)$), z_{1} and z_{2}. Henderson et al (1980) characterized $c_{11}(r)$ and $c_{12}(r)$ outside spheres by different damping factors in the same way as here, but they treated the case of $\sigma_{1} / \sigma_{2}=0$.

Once we know the Baxter function, there are several ways to calculate the density profiles near curved walls. In this paper, we employ the method to perform the direct numerical integration of the following equation which is obtained from the OZ equation in the usual way:

$$
\begin{align*}
2 \pi r g_{i 1}(r)= & A_{1}\left(r-\frac{\sigma_{1}}{2}\right)+\beta_{1}-\sum_{n=1}^{2} z_{n} C_{i 1}^{(n)} \mathrm{e}^{-z_{n} r} \\
& +2 \pi \rho \sigma_{1} \int_{0}^{x} \mathrm{~d} s\left(\sigma_{i 1}+\sigma_{1} s\right) g_{i 1}\left(\sigma_{i 1}+\sigma_{1} s\right) Q_{11}\left(\sigma_{1}(x-s)\right) \tag{7}
\end{align*}
$$

where x is defined by $r=\sigma_{i 1}+\sigma_{1} x$. From equation (7), we get immediately

$$
\begin{equation*}
g_{11}\left(\sigma_{11}\right)=\frac{1}{2 \pi \sigma_{i 1}}\left[\frac{\sigma_{i} A_{1}}{2}+\beta_{1}-\sum_{n=1}^{2} z_{n} C_{11}^{(n)} \mathrm{e}^{-z_{n} \sigma_{11}}\right] \tag{8}
\end{equation*}
$$

3. Choice of the model parameters

Now, our model is characterized by equation ($2 b$), which is specified by four parameters: z_{1}, $z_{2}, c_{11}\left(\sigma_{1}\right)$ and $c_{12}\left(\sigma_{12}\right)$. As in the previous paper (Ginoza et al 1994), we shall determine these model parameters in the spirit of the generalized MSA (Waisman 1973a). We adjust these according to the procedure below. This procedure relies on an accurate approximation to the pressure, p, of the hard-sphere fluid (Carnahan and Starling 1969):

$$
\begin{equation*}
\frac{p}{\rho k_{\mathrm{B}} T}=\frac{1+\eta+\eta^{2}-\eta^{3}}{(1-\eta)^{3}} \tag{9}
\end{equation*}
$$

As in the previous paper, we first determine z_{1} and $c_{11}\left(\sigma_{1}\right)$ by the criteria that the model is consistent with the following, well known thermodynamic relations for the hard-sphere fluid:

$$
\begin{align*}
& \frac{p}{\rho k_{\mathrm{B}} T}=1+4 \eta g_{11}\left(\sigma_{1}\right) \tag{10}\\
& \rho k_{\mathrm{B}} T K_{T}=S(0) \tag{11}
\end{align*}
$$

where k_{B} is the Boltzmann constant, K_{T} is the isothermal compressibility and $S(0)$ is the value of the static structure factor in the small-wave-vector limit. In the previous paper (Ginoza et al 1994), we obtained explicitly z_{1} and $c_{11}\left(\sigma_{1}\right)$ which satisfy equations (8), (9), (10) and (11): these are functions of η and the explicit expressions are given by equations (13) and (15) in that paper, respectively.

Let us next determine $c_{12}\left(\sigma_{12}\right)$. This means to determine η and σ_{12} dependences of $c_{12}\left(\sigma_{12}\right)$. As in the previous paper (Ginoza et al 1994), we note the exact relation as

$$
\begin{equation*}
\frac{p}{\rho k_{\mathrm{B}} T}=g_{12}\left(\sigma_{12}\right) \quad\left(\frac{\sigma_{1}}{\sigma_{12}} \rightarrow 0\right) \tag{12}
\end{equation*}
$$

and we assume that $g_{12}\left(\sigma_{12}\right)$ is linear with respect to σ_{1} / σ_{12} (Degreve and Henderson 1994). Since $g_{12}\left(\sigma_{12}\right)$ is equal to $g_{11}\left(\sigma_{1}\right)$ at $\sigma_{1} / \sigma_{12}=1$ and to $g_{12}(\infty)$ at $\sigma_{1} / \sigma_{12}=0$, we get
$g_{12}\left(\sigma_{12}\right) \equiv g_{D H}=\frac{1}{(1-\eta)^{3}}\left[\left(1-\frac{\eta}{2}\right) \frac{\sigma_{1}}{\sigma_{12}}+\left(1+\eta+\eta^{2}-\eta^{3}\right)\left(1-\frac{\sigma_{1}}{\sigma_{12}}\right)\right]$
where we used $g_{11}\left(\sigma_{1}\right)$ and $g_{12}(\infty)$ obtained from equations (10) and (12) with the use of equation (9). Then we employ the criterion that both equations (8) and (13) are consistent. With the use of equations $(6 b),(6 c)$ and the equation for $\tilde{g}_{21}\left(z_{1}\right)$, the criterion yields η and σ_{12} dependences of $c_{12}\left(\sigma_{12}\right)$ as follows:

$$
\begin{equation*}
c_{12}\left(\sigma_{12}\right)=\frac{g_{\mathrm{DH}}-g_{0}}{g_{1}} \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
& g_{0}=\frac{A_{1}}{2 \pi}\left(1-\frac{\sigma_{1}}{2 \sigma_{12}}\right)+\frac{\beta_{1}}{2 \pi \sigma_{12}}-\frac{2 \Psi}{z_{1} \sigma_{12}}\left[\frac{A_{1}}{2 \pi}\left(1+\frac{z_{1} \sigma_{2}}{2}\right)+\frac{\beta_{1}}{2 \pi} z_{1}\right] \tag{15a}\\
& g_{1}=\left(1-\frac{2 \Psi z_{1}}{z_{1}+z_{2}}\right) \frac{1}{1-\rho \widetilde{Q}_{11}\left(z_{2}\right)} \tag{15b}
\end{align*}
$$

with

$$
\begin{equation*}
\Psi=\frac{\rho}{2 z_{1}} D_{11} \mathrm{e}^{-2 z_{1} \sigma_{12}} /\left[1-\rho \tilde{Q}_{11}\left(\mathrm{i} z_{1}\right)+\frac{\rho}{2 z_{1}} D_{11} \mathrm{e}^{-2 z_{1} \sigma_{12}}\right] \tag{16}
\end{equation*}
$$

Straightforwardly, it is shown that at $z_{1}=z_{2}$, equation (14) with equations (15a) and (15b) is equivalent to equation (18) in the previous paper (Ginoza et al 1994).

Finally, let us discuss how to adjust the parameter, z_{2}. For this purpose, following Waisman et al (1976), we shall use a relation as follows:

$$
\begin{equation*}
\rho \int \mathrm{d} \boldsymbol{r} h_{12}(r)=\left\{\left[1-\beta \partial p / \partial \rho_{2}\right] /\left[\beta \partial p / \partial \rho_{1}\right]\right\}_{\rho_{2}=0} \tag{17}
\end{equation*}
$$

where p is the pressure of a binary mixture with densities ρ_{1} and ρ_{2}. This relation is a generalization of equation (11), and it is derived by using some general relations (Lebowitz 1964). If we get an expression of the right-hand side of this relation as a function of system parameters, η and σ_{1} / σ_{12}, we may use this as a determination equation of z_{2} since the lefthand side may be given model dependently. For the system in consideration, we rewrite equation (17) as

$$
\begin{equation*}
J=f\left(\eta, R_{0}\right) \tag{18}
\end{equation*}
$$

where $R_{0}=\sigma_{1} / \sigma_{12}$,

$$
\begin{align*}
& J=\frac{1}{\sigma_{1} \sigma_{12}^{2}} \int_{\sigma_{12}}^{\infty} \mathrm{d} r r^{2} h_{12}(r) \tag{19a}\\
& f\left(\eta, R_{0}\right)=1 /\left(3 R_{0}\right)+\left(R_{0}^{2} / 24 \eta\right)\left\{\left[1-\beta \partial p / \partial \rho_{2}\right] / \beta \partial p / \partial \rho_{1}\right\}_{\rho_{2}=0} \tag{19b}
\end{align*}
$$

Now, available approximate expressions of p (Lebowitz 1964, Mansoori et al 1971) give the right-hand side of equation (19b) as a power polynomial with respect to R_{0} like $c_{-1} / R_{0}+c_{0}+c_{1} R_{0}+c_{2} R_{0}{ }^{2}$. On the assumption of this functional form, we shall determine four coefficients by following conditions: $f\left(\eta, R_{0}\right)=f_{\mathrm{WHL}}(\eta)$ in the limit of $R_{0} \rightarrow 0$, $=f_{\mathrm{CS}}(\eta)$ at $R_{0}=1$ and $=0$ in the limit of $\eta \rightarrow 0$, where
$f_{\mathrm{WHL}}(\eta)=\left[9 \eta(1+2 \eta)+\eta^{2}(4-\eta)(1-4 \eta)\right] / 6\left[(1+2 \eta)^{2}-\eta^{3}(4-\eta)\right]$
$f_{\mathrm{CS}}(\eta)=\frac{1}{3}+(\eta-4) / 12\left(1+4 \eta+4 \eta^{2}-4 \eta^{3}+\eta^{4}\right)$.
Equation (20a) is the equation (54) in the work by Waisman et al (1976) and equation (20b) is $f(\eta, 1)$ which is calculated with the use of equation (9). In this way, we get

$$
\begin{equation*}
f\left(\eta, R_{0}\right)=R_{0} f_{\mathrm{CS}}(\eta)+\left(1-R_{0}\right) f_{\mathrm{WHL}}(\eta) \tag{21}
\end{equation*}
$$

On the other hand, equation ($19 a$) is calculated on the basis of our model: expanding equation ($5 c$) in powers of z_{n} and equating coefficients of like powers of z_{n} (Waisman et al 1976), we get

$$
\begin{align*}
J=\sigma_{1}^{-1} \sigma_{12}^{-2} A_{1}^{-2} & {\left[\left(\sigma_{2} A_{1} / 2+\beta_{1}\right)\left\{-\sum_{m=1}^{2} C_{21}^{(m)} \mathrm{e}^{-z_{m} \sigma_{12}}+\pi \rho T_{11}^{(2)}+\sigma_{12}\left(\sigma_{1} A_{1} / 2-\beta_{1}\right)\right\}\right.} \\
& \left.-A_{1}\left(\sum_{m=1}^{2} C_{21}^{(m)} \mathrm{e}^{-z_{m} \sigma_{12}} / z_{m}-\pi \rho T_{11}^{(3)} / 3+\pi \sigma_{12} \rho T_{11}^{(2)}\right)\right] \tag{22}
\end{align*}
$$

where

$$
\begin{equation*}
T_{11}^{(n)}=\int_{0}^{\infty} \mathrm{d} r r^{n} Q_{11}(r) \tag{23a}
\end{equation*}
$$

Equation (8) and equation (5c) with equation ($6 b$) are regarded as a system of linear equations with respect to $C_{21}^{(1)}$ and $C_{21}^{(2)}$. This system gives

$$
\begin{align*}
& \sum_{m=1}^{2} C_{21}^{(m)} \mathrm{e}^{-z_{m} \sigma_{12}}=\frac{\chi_{1}-\chi_{2}}{z_{1}}+\frac{\chi_{2}}{z_{2}} \tag{23b}\\
& \sum_{m=1}^{2} C_{21}^{(m)} \mathrm{e}^{-z_{m} \sigma_{12} / z_{m}}=\frac{\chi_{1}-\chi_{2}}{z_{1}^{2}}+\frac{\chi_{2}}{z_{2}^{2}} \tag{23c}
\end{align*}
$$

where

$$
\begin{align*}
& \chi_{1}=\sigma_{2} A_{1} / 2+\beta_{1}-2 \pi \sigma_{12} g_{12}\left(\sigma_{12}\right) \\
& \chi_{2}=\left[1-2 z_{1} \Psi /\left(z_{1}+z_{2}\right)\right]^{-1}\left\{\chi_{1}-\left(2 \Psi / z_{1}\right)\left[\left(1+z_{1} \sigma_{2} / 2\right) A_{1}+z_{1} \beta_{1}\right]\right\} \tag{23d}
\end{align*}
$$

Below, we shall use equation (13) for $g_{12}\left(\sigma_{12}\right)$ in equation (23d). It should be noted that though equation (22) with equations ($23 a-d$) and (13) is rather complex, it is an explicit function of η, R_{0}, z_{1} and z_{2}. Therefore, equation (18) with equations (21) and (22) is regarded as a determination equation of z_{2}.

Now, Ψ has a factor like $\exp \left(-2 z_{1} \sigma_{12}\right)$ according to equation (16), and as will be seen below, $2 z_{1} \sigma_{12}>10$ for interesting values of system parameters: Ψ is sufficiently small and negligible. In this case, the determination equation of z_{2} is simply a quadratic equation, and its physical solution is as follows:

$$
\begin{equation*}
\left(z_{2} \sigma_{1}\right)^{-1}=\left[\sqrt{1-4 w_{1}\left(w_{2}+w_{3}-w_{4}\right)}-1\right] \chi_{3} /\left(2 A_{1} R_{0}\right) \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
w_{1} & =A_{1} R_{0} /\left(2 \pi \sigma_{1} g_{\mathrm{DH}}-\chi_{3}\right) \\
w_{2} & =\left(6 \eta T_{11}^{(2)} R_{0}-\sigma_{1}^{4} B_{1}\right) /\left(\sigma_{1}^{3} \chi_{3}\right) \\
w_{3} & =2 \eta A_{1} R_{0}\left(T_{11}^{(3)} R_{0}-3 \sigma_{1} x_{11}^{(2)}\right) /\left(\sigma_{1}^{3} \chi_{3}^{2}\right) \\
w_{4} & =\sigma_{1}^{3} A_{1}^{2} f\left(\eta, R_{0}\right) / \chi_{3}^{2} \\
\text { with } \chi_{3}=\sigma_{1} A_{1} & +\left(\beta_{1}-\sigma_{1} A_{1} / 2\right) R_{0} .
\end{aligned}
$$

4. Summary and discussion

When the system parameters, η and R_{0}, are given, we get values of z_{1} and $c_{11}\left(\sigma_{1}\right)$ from equations (13) and (15) in the previous paper (Ginoza et al 1994) and those of $c_{12}\left(\sigma_{12}\right)$ and z_{2} from equations (14) and (24) above, respectively. In figures 1 and 2, behaviours of $c_{12}\left(\sigma_{12}\right)$ and z_{2} are shown as functions of η in cases of $R_{0}=1.0,0.5,0.1$ and 0.0 , respectively. The respective curyes in the case of $R_{0}=1.0$ are the same curyes as those of $c_{11}\left(\sigma_{1}\right)$ and z_{1}. For $R_{0}<0.01$, there are no significant changes of the values from those in $R_{0}=0.01$ in either figure. The physical solution of the determination equation of z_{2} disappears in the region of very small values of η.

In figures 3 and 4, behaviours of $g_{12}(r)$ are shown as functions of x in cases of ($\eta=0.324, \sigma_{1} / \sigma_{2}=0.0850$) and ($\eta=0.219, \sigma_{1} / \sigma_{2}=0.0850$), respectively, where

Figure 1. The behaviours of $c_{12}\left(\sigma_{12}\right)$, obtained from equation (14), as functions of η in cases of $R_{0}=1.0$, $05,0.1$ and 0.0. The curve in the case of $R_{0}=1.0$ is the same curve as that of $c_{11}\left(\sigma_{1}\right)$.

Figure 3. The behaviour of $\mathrm{g}_{12}(r)$ as a function of x in the case of $\eta=0.324$ and $\sigma_{1} / \sigma_{2}=0.0850$, where $r=\sigma_{12}+\sigma_{1} x$. The full curve is the present result, while the dotted curve is that of the simulation by Degreve and Henderson (1994).

Figure 2. The behaviours of z_{2}, obtained from equation (24), as functions of η in cases of $R_{0}=1.0,0.5,0.1$ and 0.0 . The curve in the case of $\left.R_{1}\right)=1.0$ is the same curve as that of z_{1}.

Figure 4. The same as in figure 3, but in the case of $\eta=0.219$.
$r=\sigma_{12}+\sigma_{1} x$. In the respective figures, full curves are the present results and dotted curves are those of the simulation by Degreve and Henderson (1994). The agreements are reasonably good. We investigated the σ_{1} / σ_{2} dependence of $g_{12}(r)$ for various values of η. Regarding this, the conclusion described in the previous paper (Ginoza et al 1994) is also satisfied in the extended model here.

In this paper, the MSA model in the previous paper (Ginoza et al 1994) has been extended to the case of the Yukawa closures with different damping factors characterized by equation
(2b). As is seen from equation (3a), our attempt corresponds to an application of the twoYukawa case of the MSA solution by Blum (1980). The extended model is characterized by four parameters: $z_{1}, c_{11}\left(\sigma_{1}\right), c_{12}\left(\sigma_{12}\right)$ and z_{2}. These model parameters are adjusted in such ways that the model is consistent with some exact relations like equations (10), (11), (12) and (17) as well as the Carnahan-Starling pressure, where we employed two reasonable assumptions expressed by equations (13) and (17). The superiority of the extended model to the model in the previous paper is (a) the consistency with more exact relations and (b) a closer agreement with computer simulation data (Degreve and Henderson 1994).

Acknowledgment

The present authors would like to thank Professor D Henderson for sending them the computer simulation data.

References

Blum L 1980 J. Stat. Phys. 22661
Blum L and Høye J S 1978 J. Stat. Phys. 19317
Carnahan N F and Starling K E 1969 J. Chem. Phys. 51635
Degreve L and Henderson D 1994 J. Chem. Phys. 1001606
Ginoza M 1986 J. Phys Soc, Japan 5595

- 1994 J. Phys:: Condens. Matter 61439

Ginoza M. Kinjo T and Yasutomi M 1994 J. Phys.: Condens. Matter 68383
Henderson D, Lebowitz J L, Blum L and Waisman E 1980 Mol. Phys. 3947
Lebowitz J L 1964 Phys. Rev. 133 A895
Mansoori G A. Carnahan N F, Starling K E and Leland T W Jr 1971 J. Chem. Phys. 541523
Waisman E 1973a Mol. Phys. 2545

- 1973b J. Chem. Phys. 59495

Waisman E, Henderson D and Lebowitz J L 1976 Mol. Phys. 321373

