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Okinawa 903-01, Japan 
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Abstract. The genenlized mean spherical approximation model presented in the previous paper 
is extended to the case of the analytical solution of the Omstein-Zemike equation with the 
closure relations which are given by Yukawa functions with different damping factors. The 
calculated result of the density profiles IS compared with the recent computer simulation data 

1. Introduction 

In the previous paper (Ginoza et ai 1994), we presented a model for calculation of the fluid 
density profiles of a hard-sphere fluid near curved walls and compared the calculated density 
profiles with the recent computer simulation data of Degreve and Henderson (1994). The 
model is based on the analytical solution of the Ornstein-Zernike (oz) equation with the 
closure relations consisting of Yukawa functions with the same damping factors (Ginoza 
1994). The aim of this paper is to extend the model to the case of different damping factors. 
This attempt corresponds to an application of the two-Yukawa case of the mean spherical 
approximation (MSA) solution by Blum (1980). 

2. The extended model 

Let us consider a fluid in a volume V with temperature T. The fluid consists of NI solvent 
hard spheres with the diameter U I  and a solute hard sphere with the diameter U*. We regard 
the fluid as a two-component mixture in the dilute limit 

p p Z 3  -+ 0 (1) 

where is the number density of the solute spheres. The static structure of the mixture is 
described by the total correlation function h; j (r )  and the direct correlation function c i j ( r ) :  
in the limit of equation (I) ,  h22(r) and c&) are not needed. To the oz equation, we shall 
apply the following closure relations with different damping factors: 

ai + U1 r <ail = - 
2 g ; l ( r )  = hi l ( r )  + 1 = O  (2a) 

(26) 
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c , l ( r )  = -e Kc1 -z;(r-m,,) , o;.l r 



3846 

where i = 1, 2. Therefore, the model is characterized by K I I ,  K21 (= K d ,  ZI and zz, 
which are determined from other physical criteria according to the spirit of the generalized 
MSA (Waisman 1973a). 
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Let us write equation (2b) as follows: 

where 

The 02 equation in the Baxter formalism with the closure relations (2a) and (3a) has been 
solved formally (Blum and Heye 1978, Blum 1980). The solution is given in terms of the 
Baxter function, Qil(r) ,  as follows: 

where 

otherwise 

where A l i  = (al - q) /2  and i = 1, 2. Note that there is no need to consider Q&) in the 
limit of equation (1). 

Now, regarding the coefficients in equations (4a) and (4b), we first note that in the 
limit of equation (I) ,  the 0 2  equation determining the static structure of the solvent does 
not couple to the solute: h l l ( r )  (or Ql , ( r ) )  is given by the MSA solution in the case of 
the pure fluid (Waisman 1973b, Blum and Hgye 1978). The coefficients of the solution are 
determined by q (=npo;/6), K I I  and Z I ,  p being the number density of solvent spheres. 
The most simple expressions for AI .  01, Dj;) (=Dj l )  and C,'f' (=CII) are available in the 
previous paper (Ginoza 1994) with the replacement of z ,  ZI and K in that paper by zl ,  
unity and KII. respectively, while Drf' = C,':' = 0 as shown below (see equation (6a)). 

As for Dg) and C g ) ,  they are determined by the following algebraic equations (Blum 
1980, see also Ginoza 1986): in the limit of equation (l), 
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where 

From equations (3b), (Sa) and (Sb), we get immediately the following: 

(2) - D‘2’ - D‘l) - 0 
Cll - 11 - 21 - 

Substitution of equations (6b) and (6c) into equation (Sc) yields an equation for &(z1) 
in terms of known coefficients. Thus. all coefficients in equations (4a) and (4b) can be 
obtained as explicit functions of v. UI/UZ, K I I  (or CII(UI)) ,  KIZ (or CIZ(UI~)), ZI and ZZ. 
Henderson era1 (1980) characterized c l ~ ( r )  and c1&) outside spheres by different damping 
factors in the same way as here, but they treated the case of Q / U Z  = 0. 

Once we know the Baxter function, there are several ways to calculate the densify 
profiles near curved walls. In this paper, we employ the method to perform the direct 
numerical integration of the following equation which is obtained from the 02 equation in 
the usual way: 

+Znpo i~ ’ds  (uii +a is )  &I(U;I +ais) QII (UI(X -s)) 

where x is defined by r = U ~ I  + u ~ x .  From equation (7). we get immediately 

(7) 

3. Choice of the model parameters 

Now, our model is characterized by equation (2b), which is specified by four parameters: ZI, 
ZZ, C I I ( O I )  and cl~(ulz).  As in the previous paper (Ginoza etal  1994). we shall determine 
these model parameters in the spirit of the generalized MSA (Waisman 1973a). We adjust 
these according to the procedure below. This procedure relies on an accurate approximation 
to the pressure, p ,  of the hard-sphere fluid (Carnahan and Starling 1969): 
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As in the previous paper. we first determine ZI and CI I(UI) by the criteria that the model 
is consistent with the following, well known thermodynamic relations for the hard-sphere 
fluid: 

pksTKT = S(0) 

where kg is the Boltzmann constant, K r  is the isothermal compressibility and S(0) is the 
value of the static structure factor in the small-wave-vector limit. In the previous paper 
(Ginoza et a2 1994), we obtained explicitly Z I  and C ~ I ( U ] )  which satisfy equations (S), (9), 
( IO)  and (1 I): these are functions of q and the explicit expressions are given by equations 
(13) and (15) in that paper, respectively. 

Let us next determine C I ~ ( U ~ Z ) .  This means to determine q and u t 2  dependences of 
c12(012). As in the previous paper (Ginoza et al 1994), we note the exact relation as 

and we assume that g12(u12) is linear with respect to UI/UII (Degreve and Henderson 1994). 
Since gl~(cr12) is equal to gll(al) at UI/UIZ = 1 and to gt,(m) at UI/UIZ = 0, we get 

where we used gll(ul) and glz(00) obtained from equations ( I O )  and (12) with the use of 
equation (9). Then we employ the criterion that both equations (8) and (13) are consistent. 
With the use of equations (6b), (6c) and the equation for Tz1 (zl), the criterion yields q and 
,312 dependences of c12(u12) as follows: 

where 

with 

Straightforwardly, it is shown that at :I = zz, equation (14) with equations (1%) and (1%) 
is equivalent to equation (18) in the previous paper (Ginoza et a1 1994). 

Finally, let us discuss how to adjust the parameter, z2. For this purpose, following 
Waisman et al (1976). we shall use a relation as follows: 
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~ ] d r  hiz(T) = U - ~ a P / a ~ w ~ a P ~ i i , ~  (17) 

where p is the pressure of a binary mixture with densities pi and p t ,  This relation is a 
generalization of equation ( I  I ) ,  and it is derived by using some general relations (Lebowitz 
1964). If we get an expression of the right-hand side of this relation as a function of system 
parameters. q and q l q z ,  we may use this as a determination equation of 12 since the left- 
hand side may be given model dependently. For the system in consideration. we rewrite 
equation (17) as 

J = f ( V ,  Ro) (18) 

where RO = U&JI?, 

f(v, R ~ )  = ~ ( 3 ~ 0 )  + (~O2/24~)1[1 - B ~ P / ~ P ~ I / B ~ P / ~ P ~ I , = ~ .  (196) 

Now. available approximate expressions of p (Lebowitz 1964. Mansoori ef al 1971) 
give the right-hand side of equation (19b) as a power polynomial with respect to RO like 
c ~ ~ / R o + c o + c l R o + c ~ R ~ .  On the assumption of this functional form, we shall determine 
four coefficients by following conditions: f ( q ,  Ro) = fwHL(q) in the limit of RO + 0, 
= fcs(q) at Ro = 1 and = 0 in the limit of q + 0, where 

fWHL(q)  = [gq(l + 27) + r12(4 - q)(1 - 40)1/6[(1 f 20)2 - q'(4 - U)] (20a) 

f c s (q )=f+(q-4 ) /12 (1+4q+4q2-4$+q4) .  (20b) 

Equation ( 2 0 ~ )  is the equation (54) in the work by Waisman era1 (1976) and equation (20b) 
is f ( q ,  1) which is calculated with the use of equation (9). In this way, we get 

f (17. Ro) = Rofcdv) + ( 1  - Ro)fWHlr(q). (21) 

On the other hand, equation (19a) is calculated on the basis of our model: expanding 
equation (5c) in powers of z,, and equating coefkients of like powers of zn (Waisman ez al 
1976), we get 

where 
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Equation (8) and equation (5) with equation (6b) are regarded as a system of linear 
equations with respect to C:;' and Cg'. This system gives 
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where 

X I  = o lA1/2  + PI - 2 m z g 1 d a d  

xz = [ I  - ~ZI*/(ZI +zz)I - I (xI  - (2Q/z1)[(1 + z l a z / 2 ) A i  +ztB11). 
(234 

Below, we shall use equation (13) for glz(aIz) in equation (Wd). It should be noted that 
thoilgh equation (22) with equations ( 2 3 a d )  and (13) is rather complex, i t  is an explicit 
function of q ,  Ro. 21 and ZZ. Therefore, equation (18) with equations (21) and (22) is 
regarded as a determination equation of ZZ. 

Now, Y has a faclor like exp(-2zla1z) according to equation (16), and as will be seen 
below, 2zl012 =- 10 for interesting values of system parameters: Y is sufficiently small and 
negligible. In this case, the determination equation of zz is simply a quadratic equation, and 
its physical solution is as follows: 

where 

4. Summary and discussion 

When the system parameters, q and Ro, are given, we get values of ZI and CII(UI) from 
equations (13) and (15) in the previous paper (Ginoza et al 1994) and those of C I Z ( U , ~ )  

and z2 from equations (14) and (24) above, respectively. In figures 1 and 2, behaviours 
of qZ(a .12 )  and zz are shown as functions of q in cases of Ro = 1.0, 0.5. 0.1 and 0.0, 
respectively. The respective curves in the case of RO = 1.0 are the same curves as those 
of CII(CTI) and 21. For Ro c 0.01, there are no significant changes of the values from those 
in Ro = 0.01 in either figure. The physical solution of the determination equation of zz 
disappears i n  the region of very small values of q. 

In figures 3 and 4, behaviours of g l z ( r )  are shown as functions of x in cases of 
( q  = 0.324, u l / q  = 0.0850) and (q = 0.219, al/az = 0.0850), respectively, where 
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Figure 1. The behaviours of ~12(q2). obtained from 
equation (14), as functions of q in cases of Ro = 1.0. 
OS. 0.1 and 0.0. The curve in the case of Re = 1.0 is 
[he same c t "  as that of CI I (01 ). 

Figure 2. The behaviours ofz l .  obtained from equation 
(24). as functions of q in cases of RI]  = 1.0. 0.5. 0.1 
and 0.0. The curve in the case of R4) = 1.0 is the same 
curve as that of z ,  

q=0.219 
a,/a,=O. 0850 

b 

I 2 3 4 

Figure 3. The behaviour of glz ( r )  as a function of I 
in the m e  of q = 0.324 and u ~ f c ~  = 0.0850. where 
r = 012+n~x.  The full curve is the present rault. while 
the dotted curve is that of the simulation by Degreve 
a d  Henderson (1994). 

Figure 4. The same as in figure 3, but in the case of 
q = 0.219. 

r = UIZ + UIX. In the respective figures, full curves are the present results and dotted 
curves are those of the simulation by Degreve and Henderson (1994). The agreements are 
reasonably good. We investigated the ut/u* dependence of g,Z(r) for various values of q .  
Regarding this, the conclusion described in the previous paper (Ginoza et a1 1994) is also 
satisfied in the extended model here. 

In this paper, the MSA model in the previous paper (Ginoza eta1 1994) has been extended 
to the case. of the Yukawa closures with different damping factors characterized by equation 
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(2b). As is seen from equation (3a), our attempt corresponds to an application of the two- 
Yukawa case of the MSA solution by Blum (1980). The extended model is characterized by 
four parameters: ZI. CII(UI), C I ~ ( U I ~ )  and 12. These model parameters are adjusted in such 
ways that the model is consistent with some exact relations like equations (lo), (11). (12) 
and (17) as well as the CamahanStarling pressure, where we employed two reasonable 
assumptions expressed by equations (13) and (17). 'The superiority of the extended model 
to the model in the previous paper is (a) the consistency with more exact relations and (b) 
a closer agreement with computer simulation data (Degreve and Henderson 1994). 

M Yasutomi and M Ginoza 

Acknowledgment 

The present authors would like to thank Professor D Henderson for sending them the 
computer simulation data. 

References 

Blum L 1980 J.  Slur. Phyr. 22 661 
Blum Land H0yr 1 S 1978 3. Slot. Phys. 19 317 
Carnahm N F and Starling K E 1969 J.  Chem. Phyr. 51 635 
Degrwr L and Henderson D 1994 J. C h m  Phys. 100 I6M 
Ginoza M 1986 I .  Phys So<, J u p n  55 95 
- 1994 J. Phy.7,: Condens. Mutter 6 1439 
Ginozo M. Kinjo T and Yasulomi M 1994 J. Phy,s.: Condenr. Mmer 6 8383 
Hendcrson D. Lebawitz 1 L. Blum L a n d  Waisman E 1980 Mol. Phys. 39 47 
Lcbowite 1 L I964 Phys Rev. 133 A895 
Mansoori G A. C m h  N F. Staling K E and Leland T W Jr 1971 J .  Chem. Phy.7. 54 IS23 
Waisman E 197% Mol. Phy.~. 25 45 
- 1973b I ,  Chem Phys. 59 495 
Waisman E. Henderson D and Lebowitz J L 1976 Mol. Phyz. 32 1373 


